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APPLICATION OF THE DISCRETE FOURIER TRANSFORM

TO STUDY THE DYNAMICS OF WAVE PACKETS

UDC 532.5V. A. Zharov

A method for solving equations that describe the dynamics of wave packets of the Tollmien–Schlichting
waves in the boundary layer is proposed. The method of splitting the initial problem into the linear and
nonlinear parts at each time step is used. The linear part is resolved by using an equation for spectral
components of the wave packet with a subsequent Fourier transform from the space of wavenumbers
to the physical space. A system of ordinary differential equations is solved in the physical space.
The Fourier transform is performed by means of the library procedure of the fast Fourier transform.
As examples, the problems solved were the linear dynamics of the wave packet concentrated in the
vicinity of the instability region (i.e., a set of wave vectors in the space of wavenumbers for which the
imaginary part of the eigenfrequency of the Tollmien–Schlichting waves is positive) and the nonlinear
dynamics of the wave packet overlapping the instability region.
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Introduction. The boundary layer on a flat plate in an incompressible fluid is considered. Of much interest
is the dynamics of disturbances of finite spectral size or wave packets (WP) on the background of the mean flow,
because the phenomena proceeding in the laminar part of the boundary layer can have analogs in the turbulent part
of the boundary layer. In addition, disturbance-development models can be of interest for transition predictions.

The experiments [1–3] show that the transition from the laminar to the turbulent gas motion in real situations
is associated with origination of wave packets (Tollmien–Schlichting waves) of finite spectral size in the laminar part
of the boundary layer and their subsequent downstream evolution, which is first linear and then weakly nonlinear.
The stage of strong nonlinearity corresponds actually to the transition point. Linear dynamics of wave packets is
considered in [4–6]. The early stage of nonlinear dynamics is described in [2, 7–9]. The experimental results of [2, 9]
can be used for comparisons in estimating the efficiency of the theoretical models presented in [7, 8].

The disturbance of fluid motion is composed of several parts, in accordance with the types of waves excited
in the boundary layer: Tollmien–Schlichting waves and Squire waves (waves of vertical vorticity) with a discrete or
continuous spectrum. The influence of the Tollmien–Schlichting waves with a continuous spectrum on disturbance
dynamics is considered in [10, 11]. The necessity of taking into account continuous spectrum waves follows, generally
speaking, from their weak decay in the long-wave range of the space of wavenumbers. To simplify the problem
formulation, continuous spectrum waves are not considered below.

The WP description by the solution of the Navier–Stokes equations is complicated by the small amplitude
of the disturbance, as compared to the background flow. Therefore, it is of interest to identify WP dynamics. This
becomes possible if we take into account that only one mode of the Tollmien–Schlichting waves is normally excited,
which induces the Squire wave (in the case of weak nonlinearity, it can also excite continuous spectrum waves).

In the case of a three-wave resonance, it is difficult to solve nonlinear equations even in a truncated form
because of the integrodifferential equation that describes the “0-packet” [7, 8] (new element of dynamics of the
three-wave resonance — set of harmonics in the vicinity of the origin of the space of wavenumbers) arising because
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Fig. 1. Possible initial configurations of wave packets.
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Fig. 2. Simplified initial configurations of wave packets.

of the finite size of wave packets in the weakly nonlinear approximation. Nevertheless, the linear problem of WP
dynamics in the space of wavenumbers can be readily solved. In the physical space, the amplitude distribution is
obtained by the Fourier transform. Therefore, it seems natural to split the operator of the problem into the linear
and nonlinear parts, which are solved in the space of wavenumbers and in the physical space, respectively. The
elements of the solution can be coupled by the discrete Fourier transform (fast Fourier transform).

The solution of the spectral (time) problem for the Tollmien–Schlichting waves with a discrete spectrum
shows [12] that the set of unstable wavenumbers in the space of wavenumbers α and β is a compact region located
near the origin. The continuous spectrum being neglected, the following variants of wave packets with a downstream
growing amplitude can be possible (Fig. 1).

Case I. The resonant triplet whose fundamental harmonic is located in the instability region (amplification
is described by a numerical coefficient) with the zone containing the origin (singular part of the packet).

Case II. The singularity region contains the instability region (amplification of waves is described by an
integral operator); the resonant triplet is located outside the instability region.

Case III. The singularity region contains the instability region; the discrete modes correspond to the multiple
three-wave resonance.

Case IV. The singularity region, the resonant triplet, and the instability region overlap (see Fig. 1).
The instability region is marked by the light color in the figure.
Other variants are also possible (e.g., the case of the resonance with a multiple harmonic was considered in

[13]). To describe WP dynamics in the cases listed above, one has to know the matrix elements [7, 8] in a wide
range of wavenumbers. Hence, these cases are not taken into account for demonstrating the technique operation,
and the technique is applied to the following simpler cases (Fig. 2):

1) The wave packets contains the instability region (a linear problem is solved numerically and analytically);
2) The wave packet contains the singularity region and the instability region (a linear problem is solved

numerically);
3) The wave packet contains two different components: the singularity region and the discrete harmonic in

the amplification region (a nonlinear problem is solved numerically).
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1. Equations for Harmonics and Equations for the Wave-Packet Envelope. The equation derived
in [7, 8] describes the space–time dynamics of the spectral components fk of a disturbance localized in space:( ∂

∂t̄
+ i[ω̄R(k)− (Ẋ0k)]

)
fk − ε2 ∂

∂α

(∂ωR

∂X̄0
fk

)
− ε2(ω̄I(k) + Q(k))fk = ε

∫
Hkk′fk′fk−k′ dk′ + . . . . (1)

Here, ω̄(k) = ω̄R(k) + iω̄I(k) is the dimensionless eigennumber (frequency of eigenoscillations of the Tollmien–
Schlichting waves) of the spectral problem for the Orr–Sommerfeld equation, which possesses the instability region
in the space of wavenumbers, k(α, β) is the wave vector, k =

√
α2 + β2, X̄0(t) is the position of the “center of

mass” of the localized disturbance (position of the point in the flow, which moves with a certain velocity specified
beforehand; the disturbance is observed from a moving coordinate system), the quantities Q and H are specified in
[7, 8], and ε is a small parameter.

Hence, the problem of numerical determination of the dynamics of localized disturbances of these types
arises. For wave packets of small size, it is possible to obtain a system of partial differential equations in the space
of wavenumbers [7, 8], which is, generally speaking, supplemented by an integrodifferential equation for the wave
packet located near the origin of the space of wavenumbers (“0-packet”). This circumstance severely complicates
the solution of the problem, because the linear integral operator is singular in the physical space. In the space of
wavenumbers, however, this problem is not singular. Therefore, an idea arises to split the operator in the course of
the numerical solution into the linear and nonlinear parts.

Since the amplification region is located near the origin (k ≈ 0.1–0.3), it is of interest to approximate the
eigenfrequency in this region. Approximation of the dimensionless frequency in the vicinity of zero has the following
form [7, 8, 12]:

ω̄(k) = ω̄R(k) + iε2ω̄I(k) = αa(X̄0) + b(X̄0)αk + iε2d(X̄0).

The parameters of this expression are defined in [12].
Figure 1 shows some possible initial configurations of the spectral components on the background of the

amplification region. The spectral size of an individual wave packet composing the initial configuration can be
small (case I). The dynamics of such wave packets in the physical space is determined by their small vicinity in the
space of wavenumbers. If the wave packet contains the amplification region (case IV), the disturbance amplification
(decay) in the physical space is determined by an integral operator covering the entire region where the localized
disturbance is concentrated. Intermediate cases (cases II and III) are also possible.

2. Narrow Wave Packets. Equations of dynamics of the wave-packet envelope in the laminar part of the
boundary layer on a flat plate were derived in [7, 8]. They include an integrodifferential equation, which describes
the dynamics of wave harmonics with the wave vector in the vicinity of the origin of the space of wavenumbers,
which, in the general case, are subjected to self-action and interaction with a set of wave packets that are in a three-
wave resonance with each other. In turn, the dynamics of these wave packets described by differential equations of
the type of the nonlinear Schrödinger equation is affected by wave harmonics from the vicinity of the origin of the
space of wave vectors. These equations are

∂ϕ(0)

∂t
(t, r1)− ε( ˙̄X0 − a(X̄0))

∂ϕ(0)

∂x1
(t, r1) = ε2I(0); (2)

∂ϕ̃
(n)
j

∂t
+ i(q(P̂ (n)

j )− q(nkj))ϕ̃
(n)
j + iεx1

∂ωR

∂X̄0
(P̂ (n)

j )ϕ̃(n)
j = ε2I

(n)
j , (3)

where

I(0) = −b(X̄0)
∫

G(r1 − s)
∂

∂ξ

( ∂2

∂ξ2
+

∂2

∂η2

)
ϕ(0)(t, s) ds− ix1

∂a(X̄0)
∂X̄0

∂ϕ(0)

∂x1
(t, r1)

+ (d(X̄0) + Q(0))ϕ(0)(t, r1) +
3∑

j=1

1∑
n=−1
n6=0

H0,nkj
ϕ̃

(n)
j (t, r1)ϕ̃

(−n)
j (t, r1) + H0,0(ϕ(0)(t, r1))2;

G(r) = 1/(πr);
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I
(n)
j = (ω̄I(P̂ (n)

j ) + Q(P̂ (n)
j ))ϕ̃(n)

j (t, r1) + ix2
1P

(2)(P̂ (n)
j )(nαj)ϕ̃

(n)
j (t, r1)

+
1∑

l=−1

H(nkj , lkj)ϕ̃
(l)
j (t, r′)ϕ̃(n−l)

j (t, r′′)e(l)
j e

(n−l)
j e

(−n)
j + V

(n)
j ;

P̂
(n)
j = nkj + (ε/i)∇; q(k) = ω̄R(k)− ˙̄X0α; ϕ

(n)
j = e

(n)
j ϕ̃

(n)
j ;

s = (ξ, η); e
(n)
j = exp

(
− i

t∫
0

q(nkj) dt
)
; l, n = −1, 0, 1; j = 1, 2, 3.

In the last formula, V
(n)
j are determined by the expressions

V
(n)
1 = {H(nk1, nk2) + H(nk1, nk3)}ϕ̃(n)

2 (r)ϕ̃(n)
3 (r);

V
(n)
2 = {H(nk2, nk1) + H(nk2, nk3)}ϕ̃(n)

1 (r)ϕ̃(−n)
3 (r);

V
(n)
3 = {H(nk3, nk1) + H(nk3, nk2)}ϕ̃(n)

1 (r)ϕ̃(−n)
2 (r).

Here ϕ̃
(n)
j (r) (n = −1, 1 and j = 1, 2, 3), r = (x, z) is the amplitude of the envelope of the resonant triplet

component, ϕ̃
(−n)
j are complex conjugate with ϕ̃

(n)
j , ϕ(0) is the amplitude of the “0-packet,” and k1,k2, and k3 are

the wave vectors of the resonant triplet [k1 = k2 + k3, ω̄R(k1) = ω̄R(k2) + ω̄R(k3)]; the remaining designations are
the same as in [8]. The terms corresponding to multiple harmonics are ignored in Eqs. (2) and (3).

The left side of the operator of the equations for n 6= 0 has the following form with accuracy to O(ε2):

∂ϕ̃
(n)
j (r, t)
∂t

+ ε
[∂ω̄R

∂k

∣∣∣
k=nkj

· ∇ − Ẋ0
∂

∂x

]
ϕ̃

(n)
j (r, t)− i

ε2

2

(
∇ · ∂

∂k

)2

ω̄R
∣∣∣
k=nkj

ϕ̃
(n)
j (r, t),

∇ =
( ∂

∂x
,

∂

∂z

)
,

∂

∂k
=

( ∂

∂α
,

∂

∂β

)
.

The value of H0,0 was determined [12] as an intermediate limit Hk,k−k1 , where k is directed along the
longitudinal axis of the space of wavenumbers; k1 and k−k1 are its subharmonics with a small but not vanishing k.
It turned out that Re [Hk,k−k1 ] and Im [Hk,k−k1 ] behave as power functions of α0.72 and α0.45, respectively, as
α → 0. Renormalizing the initial equations (fk = kµf̃k and µ ∼= −0.72), we can make the new value of H0,0 finite
and real, which regularizes the equations for the wave-packet envelope derived in [7, 8].

3. Some Particular Cases. In what follows, we consider cases where the longitudinal inhomogeneity is
neglected. In case 1, the instability region can be approximated by a polynomial. In this case, the dynamics of the
initially Gaussian wave packet is described by the quadrature

Ψ(x, z, t) =

∞∫
−∞

dβ

∞∫
−∞

dα exp
(
− itΦ1 + tΦ2 − Φ3 + i((α− 0.3)x + βz)

)

∼= 0.293 exp
[
− 0.25i(12 + (0.3 + 0.6ib)t + ix)2/((b− i)t− 20i)− (0.0125 + 0.09ib)t

− 0.3ix + 0.5iz2/((b− 0.4i)t− 40i)
]
/
√

(20 + i + ibt)(6.366 + 0.637t + 0.159ibt),

Φ1 = (2b(α− 0.3)2 + bβ2)/2, Φ2 = 0.01− (α− 0.15)2 − β2/5, Φ3 = ((α− 0.3)2 + β2)/0.05.

The calculation results are plotted in Fig. 3.
The same problem can be solved numerically in the linear approximation with the help of the discrete Fourier

transform. A comparison with the experimental results of [4, 9] reveals qualitative agreement with analytical and
numerical results of the present work.
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Fig. 3. Linear dynamics of the Gaussian wave packet.
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Fig. 4. Dynamics of the wave packet with self-action (the horizontal and vertical directions corre-
spond to the z and x axes).

The numerical solution allows us to consider the case where the WP carrier contains the origin of the space
of wavenumbers and the instability region (case 3). Self-action is taken into account. The splitting scheme has the
following form:

∂ϕ(0)

∂t
= H0,0(ϕ(0))2,

∂fk

∂t
= −iΩfk.

Here iΩ = (i[ω̄R(k) − (Ẋ0k)]) − ε2(ω̄I(k) + Q(k)). The calculation results show that the initially Gaussian WP
transforms to a wave packet localized in the instability region. After that, the stage of WP dispersion in the physical
space begins. Possibly, this result can explain the phenomenon described in [14, 15] and in monograph [2], where
transformation of the initially long-wave WP (streaky structures) to a short-wave WP was observed.

The solution of this problem is shown in Fig. 4. It should be noted that allowance for subharmonic compo-
nents in the initial wave packet in the numerical example given can only increase the agreement with experimental
results.

The results obtained allow us to hope that the method proposed can describe the wave packet with a more
complicated initial structure.
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